

Tetrahedron Letters 41 (2000) 8059-8062

Stereoselective synthesis of 4-aryl-2-(benzyloxy)carbonyl-3-hydroxy tetrahydrofurans from aryl epoxides

Steven R. Angle* and Stephen L. White

Department of Chemistry, University of California-Riverside, Riverside, CA 92521-0403, USA

Received 18 July 2000; accepted 9 August 2000

Abstract

The stereoselective synthesis of 4-aryl substituted tetrahydrofurans from benzyl diazoacetate and aryl epoxides is described. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: aryl epoxides; tetrahydrofurans; stereoselective; asymmetric synthesis.

The biological importance of tetrahydrofuran natural products and synthetic variants, such as C-glycosides, has prompted an extensive investigation into their asymmetric, stereocontrolled synthesis.¹ We have recently described a novel stereoselective synthesis of 4-alkyl substituted tetrahydrofurans from α -alkyl- β -(triethylsilyl)oxyaldehydes and diazoesters that affords tetrahydrofurans with a high degree of stereoselectivity.^{2,3} We sought to expand this methodology to the asymmetric synthesis of tetrahydrofurans from optically active epoxides in a single synthetic step by exploiting the known^{4,5} rearrangement of epoxides to β -silyloxyaldehydes, which can be accomplished in high yields with complete retention of optical activity. This process might provide ready access to β -silyloxyaldehydes which, in the presence of diazoesters, could then react to afford tetrahydrofurans. We report herein our progress toward this goal.

Our results are summarized in Table 1. Treatment of epoxide (-)-1 with BF₃·OEt₂ (0.2 equiv.) and benzyl diazoacetate (1.5 equiv., -78° C, 45 min) afforded (+)-3 $[\alpha]_{D}^{25}$ +10.4 (c=0.0105, CHCl₃) in 65% yield⁶ and >95% ee⁷ (Table 1, entry 1). Epoxide (+)-1 was treated with BF₃·OEt₂ (0.2 equiv.) and benzyl diazoacetate to afford (-)-3 $[\alpha]_{D}^{25}$ -10.6 (c=0.0105, CHCl₃) in 66% yield and >95% ee⁷ (entry 2). Increasing the amount of BF₃·OEt₂ to 0.5 equiv. (entry 3) led to a slight decrease in the yield of (-)-3.

^{*} Corresponding author.

^{0040-4039/00/\$ -} see front matter @ 2000 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(00)01401-5

Entry	Aryl Epoxide	Conditions ^a	Aldehyde	Tetrahydrofuran	Yield
1	(-)-1	BF3•OEt2 (0.2) ^b	$\begin{bmatrix} & & \\ & & \\ & & \\ & & \\ Et_3 SiO & O \end{bmatrix}$	(+)-3 0H (+)-3 CO ₂ Bn	65
2 3	OSiEt ₃ (+)-1	BF3•OEt2 (0.2) ^b BF3•OEt2 (0.5) ^b	$\begin{bmatrix} & & \\ ent-2 & \\ & \\ Et_3SiO & O \end{bmatrix}$	OH (-)-3 O ^{'''} CO ₂ Bn	66 55
4 5	CI (±)-4	BF3•OEt2 (0.2) ^b BF3•OEt2 (0.5) ^b	$\begin{bmatrix} CI \\ (\pm)-5 \\ Et_3SIO & O \end{bmatrix}$	CI ,,,,,,,,,,,,,,,,OH (±)-6 0 CO ₂ Bn	32 74
6 7 8 9	OSiEt ₃ (±)-7	BF3•OEt2 (0.5) ^b MABR (2.0) BF3•OEt2 (0.5) ^b MABR (2.0) BF3•OEt2 (0.5) ^c MABR (2.0) BF3•OEt2 (1.0) ^c	$\begin{bmatrix} CI \\ (\pm)-8 \\ Et_3SiO \end{bmatrix}$	CI (±)-9 (±)-9 O CO ₂ Bn	20 20 41 41
10 11 12	H ₃ C (-)-10	BF3•OEt ₂ (0.5) ^b MABR (2.0) BF3•OEt ₂ (0.2) ^c MABR (2.0) BF3•OEt ₂ (0.5) ^c	$\begin{bmatrix} CH_3 \\ (-)-11 \\ Et_3SiO \\ O \end{bmatrix}$	H ₃ C, (+)-12 OH (+)-12 CO ₂ Bn	14 23 52

Table 1 Asymmetric, stereoselective synthesis of 4-aryl tetrahydrofurans

^a1.5 equiv. of benzyl diazoacetate was used in every reaction shown above; Lewis acid followed by equiv. used. ^bAldehyde intermediate was not isolated. ^cThe aldehyde intermediate was first prepared using methylaluminum bis(4-bromo-2,6-diisopropylphenoxide) MABR catalyst (2 equiv.), isolated, purified on silica gel (25:1 hexanes/Et₂O) and used for the tetrahydrofuran reaction.

Reaction of *p*-Cl phenyl epoxide (\pm)-4 with BF₃·OEt₂ (0.2 equiv.) and benzyl diazoacetate (1.5 equiv.) at -78°C for 4 h, afforded tetrahydrofuran (\pm)-6 in 32% yield. Increasing the amount of BF₃·OEt₂ to 0.5 equiv. (-78°C, 45 min) afforded tetrahydrofuran (\pm)-6 in 74% yield. This

significant improvement in the yield with a small change in the amount of Lewis acid, relative to the lack of effect on epoxide 1, shows that the reaction is sensitive to minor changes in the substitution on the aromatic ring.

Epoxides (±)-7 and (–)-10 were treated with BF₃·OEt₂ (0.5 equiv.) and benzyl diazoacetate at -78° C to afford tetrahydrofuran products (±)-9 and (+)-12 in 20 and 14% yield, respectively. Treatment of *p*-CH₃ phenyl epoxide (–)-10 with BF₃·OEt₂ (0.2 equiv.) at -78° C for 45 min, in the absence of benzyl diazoacetate, afforded an intractable mixture of products, containing <10% of aldehyde (–)-11 (¹H NMR analysis of the crude reaction mixture). These results lead to the conclusion that the reason for the modest yields of tetrahydrofurans with BF₃·OEt₂ is due to poor conversion of epoxides (±)-7 and (–)-10 to aldehydes (±)-8 and (–)-11. It is interesting to note that minor variations in the substitution on the aromatic ring have such a major impact on the epoxide to aldehyde rearrangement. As an alternative to BF₃·OEt₂, methylaluminum bis(4-bromo-2,6-diisopropylphenoxide), MABR (2 equiv.),⁴ was reacted with epoxide (–)-10 at -78° C for 1 h (in the absence of benzyl diazoacetate) to afford aldehyde (–)-11 in 80% yield. Treatment of *m*-Cl phenyl epoxide (±)-7 under the same conditions afforded aldehyde (±)-8 in 74% yield.

While MABR was an excellent Lewis acid for the epoxide to aldehyde rearrangement, it did not result in the formation of tetrahydrofurans when benzyl diazoacetate was included in the reaction.⁸ In an attempt to effect a one-pot epoxide to tetrahydrofuran reaction, the sequential addition of MABR and BF₃·OEt₂ was investigated. Epoxide (\pm)-7 was treated with MABR (2 equiv., -78°C, 2 h) followed by sequential addition of benzyl diazoacetate (1.5 equiv.) and BF₃·OEt₂ (0.5 equiv.), to afford tetrahydrofuran (\pm)-9 in 20% yield (entry 7).

The conversion of epoxides (±)-7 and (-)-10 to tetrahydrofurans (±)-9 and (+)-12 could be effected more efficiently in a two-step process via (1) treatment of the epoxides with MABR (2 equiv., -78° C, 1 h) followed by, (2) treatment of the resulting aldehydes with BF₃·OEt₂ (0.5 equiv.) and benzyl diazoacetate (1.5 equiv.) at -78° C. This procedure afforded tetrahydrofurans (±)-9 and (+)-12 in 41 and 52% overall yield, respectively, from the corresponding epoxides (Table 1, entries 8 and 12). Increasing the amount of BF₃·OEt₂ to 1.0 equiv. (entry 9) for the conversion of (±)-8 to (±)-9 via the two-step process showed no effect on the yield of tetrahydrofuran (±)-9. Whereas, decreasing the amount of BF₃·OEt₂ to 0.2 equiv. (entry 11) for the conversion of (-)-11 to (+)-12 led to a marked decrease in the yield of tetrahydrofuran (23% from (-)-10). The optical rotations of (+)-12 prepared in the single pot reaction (entry 10) and the two-step procedure (entry 12) were identical, $[\alpha]_{D}^{25}$ +7.5 (c=0.0033, CHCl₃). Given the lack of racemization seen for (-)-1 and (+)-1, it appears that α -aryl aldehyde (-)-11 does not racemize under the reaction conditions.

Tetrahydrofurans 3, (\pm)-6, (\pm)-9, and (+)-12 all appear to have the same relative stereochemistry about the tetrahydrofuran ring, as evidenced by the identical ¹H NMR chemical shifts and coupling constants for resonances corresponding to H², H³ and H⁴ (Fig. 1). We were able to unambiguously determine the stereochemistry of tetrahydrofuran (\pm)-3 by an X-ray crystal structure of diol (\pm)-13 (prepared from (\pm)-3; LiAlH₄ 6 equiv.; Et₂O), which showed a 2,3-*trans*-3,4-*cis* orientation about the tetrahydrofuran ring.

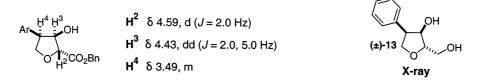


Figure 1. Summary of key ¹H NMR data

Tetrahydrofurans (\pm) -6, (\pm) -9 and (+)-12 must also possess this same 2,3-*trans*-3,4-*cis*-relative stereochemistry. This stereochemical assignment is consistent with our previous work with the synthesis of 2,3,4-trisubstituted tetrahydrofurans from aldehydes.²

In conclusion, we have developed a novel method for the asymmetric synthesis of 4-aryl-2-(benzyloxy)carbonyl-3-hydroxy tetrahydrofurans from optically active aryl epoxides. This method should be adaptable to the synthesis of several unique tetrahydrofuran natural products and *C*-glycosides. A further study on this is currently under investigation and will be reported in due course.

Acknowledgements

Acknowledgments are made to the NSF CHE-9528266 and DuPont (Graduate Research Fellowship to S.L.W.) for support of this research. We thank Dr. Fook Tham (UCR X-ray Facility) for X-ray crystallographic analysis.

References

- For recent examples and leading references see: (a) Hartung, J.; Schmidt, P. Synlett 2000, 367–370. (b) Yoda, H.; Shimojo, T.; Takabe, K. Synlett 1999, 1969–1971. (c) Gruttadauria, M.; Lo Meo, P.; Noto, R. Tetrahedron 1999, 55, 14097–14110. (d) Craig, D.; Ikin, N. J.; Mathews, N.; Smith, A. M. Tetrahedron 1999, 55, 13471–13494. (e) Zhang, H.; Seepersaud, M.; Seepersaud, S.; Mootoo, D. R. J. Org. Chem. 1998, 63, 2049–2052. (f) Marshall, J. A.; Jiang, H. Tetrahedron Lett. 1998, 39, 1493–1496. (g) Craig, D.; King, N. P.; Shaw, A. N. Tetrahedron Lett. 1997, 38, 8599–8602. (d) Petasis, N. A.; Lu, S.-P. J. Am. Chem. Soc. 1995, 117, 6394–6395. (h) Zhao, Y.; Beddoes, R. L.; Quayle, P. Tetrahedron Lett. 1994, 35, 4187–4188.
- (a) Angle, S. R.; Bernier, D. S.; Chann, K.; Jones, D. E.; Kim, M.; Neitzel, M. L.; White, S. L. *Tetrahedron Lett.* 1998, 39, 8195–8198. (b) Angle, S. R.; Bernier, D. S.; El-Said, N. A.; Jones, D. E.; Shaw, S. Z. *Tetrahedron Lett.* 1998, 39, 3919–3922.
- 3. Angle, S. R.; Wei, G. P.; Ko, Y. K.; Kubo, K. J. Am. Chem. Soc. 1995, 117, 8041-8042.
- (a) Yamamoto, H.; Maruoka, K.; Ooi, T. J. Am. Chem. Soc. 1989, 111, 6431–6432. (b) Yamamoto, H.; Maruoka, K.; Ooi, T.; Nagahara, S. Tetrahedron 1991, 47, 6983–6998.
- (a) Jung, M. E.; D'Amico, D. C. J. Am. Chem. Soc. 1993, 115, 12208–12209. (b) Jung, M. E.; Marquez, R. Tetrahedron Lett. 1999, 40, 3129–3132. (c) Jung, M. E.; Lee, W. S.; Sun, D. Org. Lett. 1999, 2, 307–309.
- 6. All new compounds were pure by chromatography and were characterized by ¹H NMR, ¹³C NMR, IR, MS and HRMS.
- 7. The %ee was determined by ¹H NMR Eu(hfc)₃ study where racemic material was used to establish the limits of detection.
- Treatment of (±) epoxide 1 with MABR (2.0 equiv.) (-78°C, 1 h), followed by addition of benzyl diazaoacetate (1.0 equiv.) with stirring for an additional 1 h at -78°C, afforded (±) aldehyde 2 and unreacted benzyl diazoacetate. No tetrahydrofuran could be seen in the crude reaction mixture by ¹H NMR and TLC analysis.